jmvalin: (Default)
[personal profile] jmvalin
banner

This demo presents the RNNoise project, showing how deep learning can be applied to noise suppression. The main idea is to combine classic signal processing with deep learning to create a real-time noise suppression algorithm that's small and fast. No expensive GPUs required — it runs easily on a Raspberry Pi. The result is much simpler (easier to tune) and sounds better than traditional noise suppression systems (been there!).

Read More

Re: Input and output data dimensions

Date: 2018-11-08 04:33 pm (UTC)
From: (Anonymous)
Thanks a lot for your quick answer!
Regarding 2), I think I have to specify my question:

Looking at your training code (rnnoise/training/rnn_train.py), you feed the network with sequences of 2000 42-element vectors/frames (= 1 training sample). Now I wonder if two distinct training samples might share a certain number of frames?

Profile

jmvalin: (Default)
jmvalin

April 2019

S M T W T F S
 1234 56
78910111213
14151617181920
21222324252627
282930    

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Apr. 26th, 2019 04:21 am
Powered by Dreamwidth Studios